当前位置:首页 > 教学文书 > 教案

分式的教案

时间:2024-01-07 09:57:22
分式的教案

分式的教案

作为一位兢兢业业的人民教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。来参考自己需要的教案吧!下面是小编精心整理的分式的教案,欢迎大家分享。

分式的教案1

教学目标

1。知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。

2。过程与方法

经历探索一次函数的应用问题,发展抽象思维。

3。情感、态度与价值观

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。

重、难点与关键

1。重点:一次函数的应用。

2。难点:一次函数的应用。

3。关键:从数形结合分析思路入手,提升应用思维。

教学方法

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。

  教学过程

一、范例点击,应用所学

例5、小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。

y=

例6、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

二、随堂练习,巩固深化

课本P119练习。

三、课堂总结,发展潜能

由学生自我评价本节课的表现。

四、布置作业,专题突破

课本P120习题14。2第9,10,11题。

分式的教案2

●课题

§3.4.2分式方程(二)

●教学目标

(一)教学知识点

1.解分式方程的一般步骤.

2.了解解分式方程验根的必要性.

(二)能力训练要求

1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤.

2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.

(三)情感与价值观要求

1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度.

2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.

●教学重点

1.解分式方程的一般步骤,熟练掌握分式方程的解决.

2.明确解分式方程验根的必要性.

●教学难点

明确分式方程验根的必要性.

●教学方法

探索发现法

学生在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性.

●教学过程

Ⅰ.提出问题,引入新课

[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.

这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法.

解方程+=2- [师生共解](1)去分母,方程两边同乘以分母的最小公倍数6,得

3(3x-1)+2(5x+2)=6×2-(4x-2).

(2)去括号,得9x-3+10x+4=12-4x+2,

(3)移项,得9x+10x+4x=12+2+3-4,

(4)合并同类项,得23x=13,

(5)使x的系数化为1,两边同除以23,x=.

分式的教案3

教学目标

1. 通过实际操作理解“学习三角形全等的四种判定方法”的必要性.

2. 比较熟练地掌握应用边角边公理时寻找非已知条件的方法和证明的分析法,初步培养学生的逻辑推理能力.

3. 初步掌握“利用三角形全等来证明线段相等或角相等或直线的平行、垂直关系等”的方法.

4. 掌握证明三角形全等问题的规范书写格式.

教学重点和难点

应用三角形的边角边公理证明问题的分析方法和书写格式.

教学过程()设计

一、 实例演示,发现公理

1. 教师出示几对三角形模板,让学生观察有几对全等三角形,并根据所学过的全等三角形的知识动手操作,加以验证,同时写出全等三角形的数学表达式.

2. 在此过程中应启发学生注意以下几点:

(1) 可用移动三角形使其重合的方法验证图3-49中的三对三角形分别全等,并根据图中已知的三对对应元素分别相等的条件,可以证明结论成立.如图3-49(c)中,由AB=AC=3cm,可将△ABC绕A点转到B与C重合;由于∠BAD=∠CAE=120°,保证AD能与AE重合;由AD=AE=5cm,可得到D与E重合.因此△BAD可与△CAE重合,说明△BAD≌△CAE.

(2) 每次判断全等,若都根据定义检查是否重合是不便操作的,需要寻找更实用的判断方法——用全等三角形的性质来判定.

(3) 由以上过程可以说明,判定两个三角形全等,不必判断三条边、三个角共六对对应元素均相等,而是可以简化到特定的三个条件,引导学生归纳出:有两边和它们的夹角对应相等的两个三角形全等.

3.画图加以巩固.

教师照课本上所叙述的过程带领学生分析画图步骤并画出图形,理解“已知两边及夹角画三角形”的方法,并加深对结论的印象.

二、 提出公理

1.板书边角边公理,指出它可简记为“边角边”或“SAS”,说明记号“SAS’的含义.

2.强调以下两点:

(1)使用条件:三 ……此处隐藏10829个字……p>

2.通分的依据:分式的基本性质。

3.通分的关键:确定几个分式的公分母。

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

例1通分:

(1)解:∵最简公分母是,

小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

(2)解:

例2通分:

(1)解:∵最简公分母的是2x(x+1)(x—1),

小结:当分母是多项式时,应先分解因式。

(2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2),

练习:教材P,79中1、2、3。

(三)课堂小结

1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

分式的教案14   一、教学目标

1. 了解分式概念.

2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

  二、重点、难点

1.重点:理解分式有意义的条件,分式的值为零的条件.

2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

3.认知难点与突破方法

难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.

  三、课堂引入

1.让学生填写P4[思考],学生自己依次填出:,,, .

2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

请同学们跟着教师一起设未知数,列方程.

设江水的流速为x千米/时.

轮船顺流航行100千米所用的时间为 小时,逆流航行60千米所用时间 小时,所以 = .

3. 以上的式子,,, ,有什么共同点?它们与分数有什么相同点和不同点?

设计意图:本章从实际问题引出分式方程 = ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.

1.本节进一步提出P4[思考]让学生自己依次填出:,,, .为下面的[观察]提供具体的式子,就以上的式子,,, ,有什么共同点?它们与分数有什么相同点和不同点?

可以发现,这些式子都像分数一样都是 (即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.

希望老师注意:分式比分数更具有一般性,例如分式 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .

[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式 才有意义.

  四、例题讲解

P5例1. 当x为何值时,分式有意义.

[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

出字母x的取值范围.

设计意图:该例题是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.

(补充)例2. 当m为何值时,分式的值为0?

(1) (2) (3)

[分析] 分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

  五、随堂练习

1.判断下列各式哪些是整式,哪些是分式?

9x+4, , , , ,

2. 当x取何值时,下列分式有意义?

(1) (2) (3)

3. 当x为何值时,分式的值为0?

(1) (2) (3)

  六、课后练习

1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.

(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.

(3)x与y的差于4的商是 .

2.当x取何值时,分式 无意义?

3. 当x为何值时,分式 的值为0?

分式的教案15

教学目标:

1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。

2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。

教学重点:去分母法解可化为一元一次方程或一元二次方程的分式方程。验根的方法。

教学难点:验根的方法。分式方程增根产生的原因。

教学准备:小黑板。

  教学过程:

复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?

(1);(2);(3);(4);

(5);(6);(7);(8)。

讲授新课:

1.由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。

2.讨论分式方程的解法:

(1)复习解方程时,怎样去分母?

(2)讲解例1:解方程(按课文讲解)

归纳:解分式方程的基本思想:

分式方程整式方程

(3)讲解例2:解方程(按课文讲解)

归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。

想一想:产生增根的原因是什么?

巩固练习:P1451t,2t。

课堂小结:什么叫做分式方程?

解分式方程时,为什么要检验?怎样检验?

布置作业:见作业本。

《分式的教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式